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Abstract

We wish to calculate the Lorentz body force associated with pure multipole helical magnetic fields (i.e,
proportional to cos(nf)) whose strength varies purely as a Fourier sinusoidal series of the longitudinal coordinate
z ( say proportional to cos (2%1)& where L denotes the half-period of the wiggler field and m=1,2,3 ...). We
also wish to apply such forces to the current sheet, and solve for the stress distribution required to maintain
such a coil in equilibrium. In the calculations of Lorentz forces we include the self field contribution as well as
possible contributions arising from additional nested helical windings. We shall demonstrate that in cases where
the current is situated on a surface of discontinuity at r=R (i.e. J=f(8,z)) and the Lorentz body force is integrated
on that surface, a closed form solution for the stress distribution can be obtained and such a solution includes
contributions from possible nested multipole magnets. Finally we demonstrate that in the limiting 2D case where
the field strength does not vary with z ( period 2L tends to infinity) the stress reduces to known 2D expressions.

On a developed surface of the current sheet we place a set of coordinates, ¢ in the current flow direction
and 7 normal to that flow (or normal to the pole). The stress in the current direction can only be associated
with a superimposed mechanical stress Tg (per unit length) such as winding tension. The solution to the stress
distribution employing such a coordinate system is,
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Introduction

We commence with deriving the Lorentz forces on a surface of discontinuity from previously derived
expressions of the fields and currents ( Appendix A). Maintaining the Lorentz body forces in equilibrium on
an infinitesimal surface area, result in set of differential equations that once solved, give the stress expressions
associated with a given current density.

It may proven to be useful and prudent to reduce the complexity of the multipole wiggler geometry by first
transforming all fields and current densities to a coordinate system that is aligned with the direction of the current
flow. A Frenet—Serret rotating unit vector coordinate system may serve such a purpose and will reduce the
3 components of the Lorentz forces to 2. We proceed in obtaining such a transformation through the use of
differential geometry (Appendix C).T Following a solution to the force equations we continue with and example
of a combined function (nested) dipole and quadrupole. The expressions for the self force and the mutual force
on each magnet have been explicitly obtained.

Finally, by reducing the periodicity to zero we obtain the stress associated with combined function of long
(2D) multipole magnets.

Lorentz Force on a Surface of Discontinuity

The Lorentz force density on a thin surface of discontinuity® (per unit area s) may be expressed as given by
(V-P),-:—fsx<f§> 1

where < B > denotes the average magnetic field on the surface < B >= &5&, j; corresponds to the surface
current density and P is the stress tensor. Previouslyd we expressed the magnetic field components both inside
and outside a current sheet (Appendix A), for an ideal current density that is proportional to cosine nf. We shall
evaluate < B > and J, on the surface at r=R and proceed to calculate the magnetic forces acting on such a surface.
To simplify the analysis we have not included in this paper contributions from a highly permeable iron yoke.

Based on the field expressions inside and outside the current sheet we write
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I am grateful to Ed Lee (HIFAR) for his helpful comments.
¢ Utility of the Maxwell Stress Tensor for Computing Magnetic Forces — L.Jackson Laslett, Lawerence Berkeley
Laboratory, report ERAN-160, August 24 1971.
4 Magnetic Field Components in a Sinusoidally Varying Helical Wiggler, LBL-35928, SC-MAG-464, July 1994.



where, n
Wm = (_2771;—1)71' and Gn,m = 'J"L'Rn (ﬁ) Bn,m

n=1,2,3.... corresponds to a dipole, quadrupole etc, m=1,2,3...., corresponds to a given periodicity where L is the
field half period. We consider the term (w,, R) to be the argument of all Modified Bessel functions I, and K,
and all derivatives of such functions taken to be with respect to that argument.

19Jp _

We note that the pair of current components satisfy the conservation condition V - Jy = %‘% + w55 =0 as
required and that for a given n,m the ratio of the current density components is fixed (although n,m dependent)

independent of the coordinates
B s
Jg - wn R

and therefore the space curve generated by the pole n,m is a circular helix with a fixed axial to azimuthal ratio
(Fig. 1),
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We shall require that for all nested helical windings other than n,m the angle « will not change. That is

n i P
=tana;; = —
W o wjiR

tan apm =

and therefore for such cases the ratio of all current densities to remain constant.

Before we proceed we need to make a clear distinction between the PERIODICITY OF THE FIELD 2L, and
the PERIODICITY OF THE WIRE 2!/. Whereas the periodicity of the field depends on the magnet type n, we
choose to hold the WIRE periodicity fixed for all nesting coils. Such a specific choice maintains the same direction
of all current “wires” including nested coils of different types and therefore permits additional solutions resulting
from interactions among all such nested windings. As an example we note that the periodicity of a dipole field
(n=1) is identical to its wire period, but in a quadrupole (n=2) the field period is half of the wire period. If we
express the wire period as 2/, we can write [ = nL, where L corresponds to the field periodicity associated with
a 2n pole magnet. If we define a periodicity with respect to the wire as p, we may write :

= 1
o (2m — 1w _ n(2m ) —

L [

and the condition for the helix incline is, (independent of n),

tana = =4

pmR

We shall transform all fields and currents to a coordinate system (p,7,{) where ¢&,,é lay in the developed
plan of a cylinder of radius R and €, is normal to it. In such a developed view the direction of the current flow
is constant, pointing in the & direction. The direction normal to the flow in that plane &,, points towards the
pole and is normal to the midplane (Fig. 1).
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Figure 1 Frenet—Serret coordinate system along the helix path — top, and a
developed view of the cylinder with p pointing out of the paper — bottom.

We introduce some additional relations and substitutions ,
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Expressing the field and current in the (p,7,6) coordinate system,
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and

L[ 1 )0
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(+ = pmR* K,
where,
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/ ' npm R ’

Lorentz Force

Most electromagnets — dipoles, quads etc are built as single function magnets, in cases where combined
function magnets are needed several single function magnets are superimposed. This is a direct result from the
fact that we know how to wind single function magnets and lack the knowledge of winding multi function magnets
in a single physical configuration (not superimposed). Therefore we focus on magnet n period m that carries a
current density J and sum up all field contributions arising from magnets i period m with the same wire period
2l. We express the contributions to the forces in two parts, one arising from a self field and the other arising
from the cross interaction between all other fields and the same single function magnet n,m. At a later point we
shall transform the stress components on magnet n,m from the &,,é&¢ direction, to the global coordinates p,0,z.
That stress may be of interest in cases where an imposed structural requirements is needed. The stress in terms
of p,n,& within each individual coil n,m may be of more interest when a coil prestress is needed (such as in
superconducting magnets).

The Lorentz force in a Frenet—Serret coordinate system result in two force components — fp and fy.

The Lorentz force on coil n,m is

. €, & é¢
fn,m == Jn’m X B = 0 0 Jen.m
<B,> <B;> 0

f:l,m = [_Jen.m < Bﬂ >]ép ca [an,m < BP >]é"?

Explicitly the force components are,
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Figure 2 Forces on a current sheet.
Equilibrium — method I

The force equilibrium on a current surface element ds,0s¢ requires that (Fig. 2)

where the f’s are the local Lorentz body forces and the P’s are the stresses required to maintain equilibrium. ¢
and n are in the direction of the principle axis.

We note that the change in the total force P in the 7 direction with respect to £ is constant along £ :

1 By
and similarly
’ PE
Fi= g =1(6)
" P
P = £
P bsebsy

therefore, after dividing by the element area, the equilibrium equation can be written as :

) d(Pyen) d(Pe)
Ppep+ fpep'i" T+_fr]eq + d—SE —I— fEeE = 0
or
", P dP‘ L r([é dP’ .rdé
P,,ep—l—fpep+—"e,,+P !

dS,j HE 2l fl]en +

& ¢ "
— 28, + P 4 = {
dsi i £ dse Teée

Where P’ is a force per unit length and P” is a force per unit area.
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Introducing the geometric relations developed in Appendix C,
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If we assume that the force in the £ direction per unit length is constant (e.g constant tension in a wire) and
since the Lorentz force in the ¢ direction is 0 (f‘f:O) we may write:

PEJ = Tgn,m = constant
dP;

4
—= =
dSE

Finally the differential equations for the stress components are:

dP, = —frdsy
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Equilibrium — method II

This method is based on the equality between the divergence of the stress tensor P and the restoring Lorentz
forces f,

(V-P)i=—fi

where,

OP;
(V'P)":ZJ:{!LJBJ% +Z(P§, J;-[—I‘“Ph)}

- 1 8]?] 61 ahka
3k = hihp \Ozx 7 Bz; k

In the major coordinate system (p,n,£) we assume there is no shear stress — F; ; = 0 for all 2 # j. Therefore,
the divergence can be written,
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and finally,
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On the “current sheet” we shall define P as force per unit length (instead of per unit area). Since h; = f(z1)
: .y .
and 6z, = 6p — 0 we writeP;; = 6213{) s 9 ¢ # 1, therefore
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If we now substitute the derivatives,
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With x;=p=R, xp=), x3=( and P:;,3 = constant = —Tg, . — where T, is the tension, or the force in the
flow direction per unit length — we get a set of differential equations identical to that in part I,

i 1 . mR)?

PP o _fp F 9 S'? Yy (p ) 2 n,m
R[l + (me)‘] R[l + (me)“]
' R
dP, = e p—— fndn
1+ (pmR)

Mg,

ot 0

Note that a specific choice was made in both sections in the way the current sheet is placed. We assume
that an initial tension is applied to the windings while they are placed around the mandrel or bore tube. Under
such circumstances an initial outward (radial) stress is exerted by the bore tube on the windings. We may wish
to consider a case where a bore tube is placed outside the current sheet. Such a case permits placing the winding
under compression, requiring a sign inversion of P:;,s = T, .- The case of no tension or compression is trivial

P;,;, =T =0

Solution to P,; and P:

Proceeding with the solution to the stress equations we shall first solve the hoop stress in the 7 direction and
then solve for the radial stress.

Integration path
line of constant § |

constant 1|

z \ T, : S

Figure 3 A developed view of the cylinder surface showing the orthogonal coordinates &
and 7. The integration path starts at the pole uye takes place along a line of constant &.



The general differential equation for P,; is :

(]
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With ds, = ﬁdn the integration above is carried out along a constant £, commencing at the pole
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Npole = —g% (Fig. 3).
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and for the special case n=i :
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Transforming the stress tensor to the global coordinates p,0,z

Since £ and 7 are principal axis, the shear stress 7z, = 0 and the relations® for the stress components in
p,0,z are :

P,; = ,; sin® o + Pé cos’
P; — P,; cos?® o -+ PE' sin? o
. P — P,
Tog = — 1 § sin 2¢v
2
F,=PF,
We shall make use, as before, of
. . 2pm R
sina = cosa = sin2a = (s

1 _ rm B )
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e

Theory of Elasticity — Timoshenko and Goodier, pp. 185-186.
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So that the stress for the case n # 1 is,
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We note that in the 2d limiting case :

PH_Pqu
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Example 1 — Combined helical Dipole and Quad

We illustrate and apply the solution to a combined helical dipole and quad, having both a single and identical
wire period pj.

Helical dipole n=1 and quad i=2

The stress on the dipole will arise from the self field n=1 plus a contribution from the quadrupole i=2 coil (Fig.
4). We shall substitute n=1 and i=2 into the stress solution and assume that all Bessel functions and derivatives
are with respect to their corresponding argument,

2B R*2B
Gii=R 5 ;’{1 where B ; is the dipole , G = 2,1
: 1

where 2B» ; is the gradient

1

£ 1 2 I;(le) 2 4 G v I;(?le) 3
n 1,17 c
2R Ky (mR)

2 ;
o [1 +(P1R) ] Gi1 (L(p1R)K1(p1R)) coin
? 2uR?  pR K{(pR)K{(p1R)

L+ 0R] G116 (BB Ko 2iR)
2410 R mR K (pR)K,(2p1R)
! » LB o
20 B2 |1+ (mRY| " Ka(miR)

1 4 I;(2PIR) 3
poR2 1+ (mRY?| 3 Ki(pR)
(pR)?
R[1+ (p1R)’]

+ 2 cos 1 cos 27

.|._

+ G11G2,1

: ¥ TEl,:
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Figure 4 A polar plot of the magnitude of P,; for n=1 and i=2
.F',; =cos’n+ Acos®n ; n=0—F, A=0 corresponds to a single function dipole (no quad)

Helical quadrupole n=2 and dipole i=1

Similarly the stress on the quad arise from the self field n=2, with a contribution from the dipole i=1.

s
P1 = 7
228
Gi11 = RQBLI & 4 ipole , Gy = L 2,’,1 where 2B ; is the gradient
P (mR)”
’ 1 L(2pR) 1 I,(p1R) "
" 2uoR Z'IK:;(?PlR) cos” 21 + a0k 2,1G11 K (2pi R) ( cos’ 7 cos ) + \/_)

" [1 +(p1R)° ] G 1 (12(21’13)1‘2(21’01 ))

P =2 0s?
Z;LQRQ p1R I&z(gpl ) (2p1R) 77
[1 + (pLfE) ] G2,1G11 (Lh(p1R) Ky (p1 R)) . ——
240 R? pBR  Ky(2p1R)K,(p1 R)
+ _ ]. G%.] I?‘(QPIR) 032 27?
2o R% |1 + (le)z] K5(2p1 R)
1 I (p1R
R - = GQ’]GI,I#(2COSQT?—3COS?]+\/i)
3uoR% |1+ (p1R) ] K,(2p R)
R)?
4 (mR) =
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Figure 5 A polar plot of the magnitude of P,; for n=2 and i=1
P, = cos®n + A[2cos® ) — 3 cos 7 + /2], B=0 corresponds to a single function quad (no dipole)

Example 2

In a previous report’ we have proposed a possible design of a thick superconducting helical dipole wiggler (
n=1 only ) that has a short sample central field of 1.92 T and 2.48 T corresponding to two different types of NbTi
superconductors. Other parameters associated with that design were: an inner diameter of 6.5 mm that has an
equivalent radius of R=3.836 mm corresponding to a thin coil approximation and a 27 mm period (2[) . Therefore,
with s = 1,‘3 = 0.892678 we calculate : I1(s) = 0.49, [;(s) = 0.654, Ki(s) =0.735, K;(s) = —1.3 and get:

i .. 2RB:, i I N
i B L - 3351.98B2 [ =
2u0R K, pg 82 Kj m
leading to the following results :
P, = —3854.28B cos’n (N/m)
" B}, ([1K7)
P, = —-3854.28—~ | (1 + s*) ——
R ( ) sl K

p B
The maximum force is therefore applied at the midplane ( 7=0 ), where for B; ;=1.92 T:
P, = —1.42084E4 (N/m) = — 81 (Ibj/inch)

P: = — 3.432 (M Pascal) = — 498 (psi)

.
T 2] cos®np = —9.3101 E5 B}, cos®n (N/m?)
S

and for B; ;=248 T:
P, = —2.370536 E4 (N/m) = —135 (lb/inch)

"

P, = —5.72608 (M Pascal) = —830 (pst)

T A Superconducting Helical Undulator for Short Wavelength FELs. — S.Caspi, SC-MAG-475, LBID-2052,
Lawrence Berkeley Lab., September 19, 1994.
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Limiting 2D case

We can reduce the results of general force equations to the more familiar 2D case by extending the period
2L — oco. We note that for such a limit when s = w,, R = nppR — 0 (as well as s = wjR = 1p;R — 0)
and make use of

L(s) 2 (3)2“
K, (s) nl(n —1)1\2

’

Cnm ( )
Kx(s)

Gn,mGij1i(35)
K, (sn)
limss_o[[ K] — 0

= —OnR* B2

limss_.o

— —2an+iBnBi

limsg_.g

reducing the stress in a helix to the 2D expressions :

2n—1 1—n .
Py =lims_oP, = _nR cos 2no + Z QER BB [z cos 1l cos nfl + nsin 2 sin nf — nsin E]

P
Ho ey n 2n
" s B
Pp = 137715A0Pp — T
a0 %R~ B, B; i
= ———{ B; cos“nf + Z ————— i cos 10 cos nf 4+ nsini0sin nd — nsin —
o P §é =1 2n
From the linear current density relation
- #UJO;:
" 2nRn-l

we may write the expression for the field Bp,x corresponding to the field just inside the windings at radius r=R

r“’OJOZ

Bmax,n = anRn_l = )
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Note that :

1By = B; dipole field
2B = (G quad gradient

B, =
e 3B3 = S Sextupole

therefore in a dipole magnet By, is the dipole field, in a quadrupole Bp,x=Gradient*R=2B,*R, and in a sextupole
Bmax=Sextupole*R2=3B3 *R2 etc. The above 2D stress equations can be expressed in terms of the maximum field
or in terms of current density :

' R BZ az,n 2B az nB az ¥
Pp=——{T s nf + E m,2 ’ ;" d [zcosaﬁcosnﬁ-}—nsmzf)smnﬂ—nsmﬁ]
140 n ‘—n 2n
i#n
x B
s
hi=%
]' B?nﬂr n ZB maI l
= " cos®nd + E m;z s = [z cos 10 cos nf + nsinf sin nf — nsin E]
Lo n i 1 —n 2n

' Jan Jzn 2Jz I .
Psz—‘uo 0% o c052n9+z , L [zcoszﬂcosnﬂ—l«nsmz@smnﬂ—nsmﬂ]

2 __n2
4 n i () n 2n
Pif = :-Pi.g‘
p R
J; J 2oz |. : o s ;
. 402'n 0;‘” cos® nf + Z 3 _0"”2 [z cos 10 cosnf + nsin 16 sin nf — n sin %]

1#n

We note that for single function magnets the above expressions are in agreement with the 2D analysis, as

it should be®.

E

Forces in a Thin Cosine nf Winding — R.Meuser, Engineering Note M5266, November 15, 1978.
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Example A. n=1, i=2 (stress in a dipole with a superimposed quad)

- tﬁ (B% cos® 0 + gRBl B cos® 6‘)
0

or

<0,
[
N

R 4
(B’;‘ax 1 CO52 0 + "'Bmaz leaz 2 COS3 0
ﬂo 3 . 3 f

or

_ R
»
EE

(‘]0 1 COS 29 -+ §Jg 1J0 2 COS 9)

(B, cos” 0 + §RB, B; cos e)

"

v
I
‘T--I._.

( maz,] COS” 9+ 3Bma1: leaxBCOS 6) H

——49-(.]01cos 8 + JolJnocos 9)

Example B. n=2 , i=1 (stress in a quad with a superimposed dipole)

([ 2R3 2 B,B
—~ ﬂ—[Bgc 0520 — = 2R ! (cosa+ sin 26 sin  — \/5)]
0
or
R | B2 9
={ — .!To —mga—g"‘zcos2 20 — §Bmu,2BmM‘1 (cosﬂ + sin 20 sin § — \/5)]
or

= .ﬂ;_R [J&z cos? 26 — %Jo,zJo,l (cos 0 + sin 20sin 0 — \/5)]

([ 2R? 2 By By
—— | B3 cog® 29 — =22
1o [ 2€08 3 R

(cos 0 + sin 20 sin § — \/5)]

or

2

1 [B
=g e "’T“” 0s220 — = Bmaz‘gBmar1(C0$9+Slﬂ29$1ﬂ0 \/_)]

fto 3

or

[ 5 4
= J&’,z cos” 20 — §J0,2J0,1 (cos f + sin 20 sin 6 — ﬁ)}
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Average stress or Magnetic Pressure (2D)

We can define the “magnetic pressure” associated with multipole magnets by integrating the local stress and
dividing by the area of integration. With the help of :

27 27 27
/cos2 nfddd == ; /cos 10 cosnfdfd =0 ; /sin 10sinnfdf =0
0 0 0

"

we express the average radial pressure P,, as

[ [ P! Rdo

P " _ Of P B _nR‘.!(n—l)B?l
B eR 2p0

B2

maz,n

2pon
_ pdgs
8n

We also note that in a single function magnet the stored energy and pressure can be written as :

2 2
Hodzo Bmaa;,n

e = S
Bl 4n fon

Units :

In MKS units :

I: amp
B : Tesla ( or Weber/meter?)
L : meter
F : newton
7, — J - T:A
—~ Al P -

Useful conversions :

multiply (N/m) by 5.710174e-3 to get (Ib/inch)
multiply (N) by 0.22481 to get (Ib)

multiply (N/m?) by 1.450377e—4 to get (psi)
multiply (psi) by 6.8947e-3 to get (MPascal)




Appendix A Field Components

The field components in the region interior to the windings r<R are :

Bi=——rwx=— Z Z G i L wm r)sin (nf — wpyz)

n=1m=1
IBV
By = - = — Z Z nGh, m I (wmr) cos (nf — wp z)
n=1m=1
B——ﬂ—ZZC In(wmr) cos (nd — wpz)
z = Dz = La iy Tpn,mWmin(WmnT n m<

The field components in the region exterior to the windings r>R are :

; me) ' !
Z Z Gh, mWm 77—y (@) K, (wmr)sin (nl — wpz2)

n=1m=1
Z Z WGhm ,", me) — K (wmr) cos (nf — wmz)
n=1m=1 I R)
By = Z Z Gty i me) ———— Kp(wmr) cos (nf — wnpz)
n=1m=1 I" me) ! |
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Appendix B Lorentz Force on a Surface of Discontinuity

The Lorentz force density on a thin surface of discontinuity™ (per unit area s) may be expressed as given by

d_j? = —+
E_Jax ol g (D

where < B > denotes the average magnetic field at the surface < B >= w and j; corresponds to the
surface current density. With n corresponding to a unit vector normal to the surface, the current density may
be expressed as

JS — _(JS X ﬁ.) X 'ﬁ,

and since

where
§B = By — B
the force density (Eq. 1) may be written in terms of field

dF Tr . 2
and reduce, with the aid of the vector identity ( (A x B) x C = B(A-C) — A(B-C) ), to

Z_i: = Hio[éé(ﬁ- < B >) —ﬁ(&é- < §>)]

Specifically, in cylindrical coordinates with a surface of discontinuity at r=R we write

. dF 1
= E = E[_(< By > 6B+ < B, > 5Bz)ér+ < B, > §Bgép+ < B, > 6Bzéz]|r=R (2)

We note that with B; continuous at r=R we may write B, =< B, > and §B < B >= B§+B;“ so that the

Lorentz force is

L odF 1 1y -
. A B .| B2—B2)“ B,6Bgég + Br6B.é, | |re

f S “0[ 2( 5 — B} |ér + aég + éx|lr=n

52 3
where B; = Y BZ,
=)

1

b Utility of the Maxwell Stress Tensor for Computing Magnetic Forces — L.Jackson Laslett, Lawerence Berkeley
Laboratory, report ERAN-160, August 24 1971.
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For a helical magnet the combined fields can be written as

([ Z Z Gn,mwmf;, sin (nf — wpyz) 3

n=1m=1

i T?Cn an (1a K )
B3 lh=p=% "7 Z Z K cos (nf — wmz) \

n=1m=1

53 3 Gum - cos (1l — )

n=1m=1 J

and the difference of such fields (with the help of the Wronskian IH,K,; — LB —m) as

(0 3

??Cﬂm 1 1
- — Z Z — cos (nf — wp2)
6B|T=R — n=1 m=1 me)I

_ZZGnm - cos(n9 WmZ)

\ n=1lm=1 /

where
(2m — )7

L

The resulting current density is therefore

2 mn
Tp,m — IR" | — Bnm
and Gy, n!R (me>

By =

(0 3
" i | = Z Z G, I" cos (nd — wpyz)
']slr:R = #_0 n=1m=1 ’
nGpm 1
- nz:l mZ_ P cos (nf — wpz) ,

We consider the term (w, R) to be the argument of all Modified Bessel functions I, and K, and all derivatives
of such functions taken to be with respect to that argument.
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Appendix C Frenet—Serret coordinate system

To derive the unit vectors associated with the helix geometry (Fig. 1) we need to introduce the radius vector 7 :

n i
tana = =

Wk pmBE

so that

7}
z=Rltana = —
Pm

therefore the radius vector along the helix is :

7(0) = R cos 01 + Rsin 6] + L3

Pm
From
dr o s 1
— = —Rsinfi + Rcosfj + —k
df Pm
P d
i W e el

The unit vector in the helix (flow) direction is

" dr %{: 1 ( e " 1 =
g =—="0-=————| —sinbi+cosl) + —5k
dsg %ﬁ V1 +tan? « pmR
and since & = —sin#i + cos 0)

. 1
6 = —————
. \/1+ta,n2a

We show that for a helix the change in the unit vector & with s¢s

(&g + tan aé;)

dég
— = Ke
dSE ep
will result in a constant radius of curvature K :
déE 1 ( 6: ; 9“) 1 A
— = —————| —cos ¥Vl —sInb) | = ——F—=¢€
df V1 + tan® o V1 + tan’a
% de
def EG-E- 1 ( 2 " 2
— e HB cosfh-l—smﬁ')
ds¢ 1’3‘%@ R(l + tan? a) !
therefore & i q
. " " eE
Klle,)| =K =|-—| = = —
K| ds¢| R(1+tan’a) pg
The unit vector in the 5 direction is
g i i k ; ) o
€p =€ X € = ———|—sinf cosl tana =————(—sinﬂtanai—{—cosﬂta,naj—k)

\/1+ta,n20z cos 0 sin 0 0 \/l—l—tanza
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or
; 1

é, = ————(tan aég — &)

V14 tan® o
tan o -

deé, tan o
— L= é

B s ) =

the radius of curvature along the helix (p=constant) upon which &, varies is constant as well :

Since

lé

dé, t{ —tan o ( .
— =g - cosfh—l—sm@)
dsg L R(1+ tan®a) .
therefore e i
de
= ——&,
dsg Py
where
R(l + tan? ar)
Pn tan o
and one may note that
P_g = tan o
Py
We have now two sets of coordinate
& =&,
1
&y = —————(tan aéy — &;)
V14 tan® o
1 =
& = ———(&y + tan ae;)
V14 tan? o
and . p
é =@,
A 1 ’ "
eg = ———(tan aey + eg)
V14 tan? o ‘
1 =
é, = —(~é,, + tan aeE)

: V1 + tan? o

Additional useful relations,

dé, 1 )
i Cp

db 1 + (PnR)?

I

e = Ry/1+ (PnR)?

déy _ dé&y df _ 1 "
dsy do ds, R[l n (PmR)g] p
deg 1. (PnR)®

= ——e, = —

ds¢ — pe " R[1+(PuR)
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Current Density
We have previously expressed the current density as
J = Joég + Jz8,

Since (-f,;) = tan a we may write in the new coordinate system
n,m

val +tan2aA

J"’m = tan « i

Zn,m

which is consistent with the statement that the current flow is solely in the £ direction.

As a side issue we note that the current density

Gmif1+ (“,,’;R)2

(oRK,

cos (nl — wpz)

Jn,m = JE,.,m =

preserves the “cos-nf” current density distribution and therefor we may write
Jtnm = Jog cos (N0 — Wy, 2)

2
Gnmi[1+ (wj: R)
poRK,

Jog = —

and introducing the expression for G, we write

IR 14/n? + (wmR)? / 9 \"H
J(;g = — ( R) Bn,m

20 K,

Wm

or

20 K, Jog (me)““
Bn =

’ nlR*14/n? + (WmR)® »

We wish to normalize the above expression with respect to the corresponding 2D case ( w — 0)

ooz
Buab = gt
so that :
B ank, (me)““(Jof)
Bn2p nl/n? + (me)2 2 Jo:
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By comparing a helical magnet and a straight magnet under the condition that both magnets carry the same
total current (independent of periodicity), such that

[

12 2n
Rtana 2R
I = /J ds, = Jy ] cos N———=df = J
. - S E_" V1 + tan’ @ % n2+(me)2

2n

12
P
I, = limy,_ R / Jeds, = JUZ?R

m
we may write

Joe n? + (“-’mR)2

Joz n

By substituting the above relation into the field expression we get :

Bum _ 4K, (wmR\""
Bngp B n! 2

O O e e i e T 7 L A T L T Y B I
10 !

09 3 =

B1,1/B2d

04 \ E
03 \ {
02 F N -

0.1 S 1

0.0 PR SR W VT U VR N VAT VT W [ WA WO W S (SO W W WY T U VU U SV S ST W BT T i s o T SO |

1 2 3 4 5 6 7 8 9 10

Figure 6 The normalized field as a function of s = wR for a dipole magnet, n=1.
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